Computing Invariant Sets of Random Differential Equations Using Polynomial Chaos
نویسندگان
چکیده
منابع مشابه
Polynomial Chaos Expansions for Random Ordinary Differential Equations
We consider numerical methods for finding approximate solutions to Ordinary Differential Equations (ODEs) with parameters distributed with some probability by the Generalized Polynomial Chaos (GPC) approach. In particular, we consider those with forcing functions that have a random parameter in both the scalar and vector case. We then consider linear systems of ODEs with deterministic forcing a...
متن کاملPolynomial Chaos for Linear Differential Algebraic Equations with Random Parameters
Technical applications are often modeled by systems of differential algebraic equations. The systems may include parameters that involve some uncertainties. We arrange a stochastic model for uncertainty quantification in the case of linear systems of differential algebraic equations. The generalized polynomial chaos yields a larger linear system of differential algebraic equations, whose soluti...
متن کاملComputing with Polynomial Ordinary Differential Equations
In 1941, Claude Shannon introduced the General Purpose Analog Computer (GPAC) as a mathematical model of DiUerential Analysers, that is to say as a model of continuoustime analog (mechanical, and later on electronic) machines of that time. Following Shannon’s arguments, functions generated by the GPAC must satisfy a polynomial diUerential algebraic equation (DAE). As it is known that some compu...
متن کاملDo the generalized polynomial chaos and Fröbenius methods retain the statistical moments of random differential equations?
The aim of this paper is to explore whether the generalized polynomial chaos (gPC) and random Fröbenius methods preserve the first three statistical moments of random differential equations. There exist exact solutions only for a few cases, so there is a need to use other techniques for validating the aforementioned methods in regards to their accuracy and convergence. Here we present a techniq...
متن کاملDynamical Polynomial Chaos Expansions and Long Time Evolution of Differential Equations with Random Forcing
Polynomial chaos expansions (PCE) allow us to propagate uncertainties in the coefficients of differential equations to the statistics of their solutions. Their main advantage is that they replace stochastic equations by systems of deterministic equations. Their main challenge is that the computational cost becomes prohibitive when the dimension of the parameters modeling the stochasticity is ev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Applied Dynamical Systems
سال: 2020
ISSN: 1536-0040
DOI: 10.1137/18m1235818